Mastering Combination Product Development: From Immersion to Validation
THE IMMERSIVE BEGINNING
Our journey kicks off with immersion, a creative problem-solving phase. Here, we ensure that solutions are at the ready for any potential roadblocks. We dive into the waters to test the concept's feasibility and identify potential challenges. We also map out short and long-term objectives, charting the course for product development.
MASTERING THE ART OF DESIGN
With a clear vision in mind, we start breathing life into it through meticulous planning and execution. Crafting a combination product resembles assembling an intrurate puzzle, where every detail carries significance. This stage revolves around rigorous testing and evaluation to pinpoint the best and most efficient design solutions.
CONSTRUCTING THE FUTURE
This phase is undeniably exhilarating. Building the product is where the concept takes tangible form. Transitioning from design to reality, prototyping takes center stage. It grants us the opportunity to scrutinize every element, ensuring the product's integrity and functionality.
THE PINNACLE TEST
Validation stands out as perhaps the most pivotal step in the entire process. During this phase, the product undergoes comprehensive reviews and testing to unveil any last-minute imperfections or errors. This thorough examination ensures the product is primed for its grand debut in the market. Validation acts as the ultimate litmus test, determining the readiness of the combination product for integration into various healthcare services.
Taylor Schmitt is currently a student at The Ohio State University, where she studies marketing. She loves exploring new opportunities and facing new challenges. While working at Kaleidoscope she has been able to work closely with the sales team to support business growth and brand visibility
Matt has always loved interacting with clients to find solutions for their challenges. He was drawn to business development at Kaleidoscope Innovation because of the great potential he saw. After graduating from the Lindner College of Business at the University of Cincinnati, he worked with two startups, a marketing consultancy, a financial services company and the non-profit 3CDC. He believes that listening is the most important part of sales. In his free time, Matt enjoys movies, trying new foods, traveling and the great outdoors.
The Trio Shaping the Future of Orthopedic Product Development
In the orthopedic industry, ensuring patient safety, minimizing infection risks, and optimizing cost-effectiveness are paramount considerations. To achieve these goals, three key elements play a crucial role: sterilization, reusable instrumentation, and packaging. In this article, we explore the best practices of this triad from an expert's perspective, emphasizing the impact on patient outcomes, operational efficiency, and environmental sustainability within orthopedic product development.
Sterilization: A Critical Imperative in Orthopedic Product Development
Sterilization is a fundamental aspect of medical device product development, manufacturing, and usage. By eliminating microorganisms and reducing the risk of surgical site infections (SSIs), proper design and sterilization protocols safeguard patient safety. The chosen sterilization method, such as steam, ethylene oxide, or gamma irradiation, will impact both material choice and part geometry.
Many plastics are not temperature stable with steam and may degrade with gamma irradiation. Tight interfaces and blind holes challenge EO gas / steam penetration to all host sites. And depending on how packaging is configured on a sterilization pallet, large devices may shield others from receiving a full dose of gamma ray. The rigorous validation of both cleaning and sterilization processes adhering to regulatory standards are essential to maintain the orthopedic instrumentation and implants.
Packaging: Safeguarding Integrity and Sustainability
Whether it’s a single use peel pouch or reusable surgical case, orthopedic devices require specialized packaging to ensure product integrity, sterility maintenance, and efficient handling.
Peel Pouch/Tray: Engineering seal width both for sterile integrity and ease of use. Heavier devices are more likely to put stress on sterile seal unless properly constrained. Right-size pouches within cartons to minimize creases, opt for a gentle roll instead. Execute verification tests after accelerated, real-time aging, and ASTM D4169 transit simulation. Testing doesn’t end at submission, incorporate in-process testing per ASTM F88 for ongoing vigilance.
Reusable Surgical Case: Layout instrumentation/implants as it makes sense for the procedure work-flow with spacing that allows steam ingress. Orientation angle should facilitate shedding of moisture, avoid any upward facing cavities as to prevent condensation pooling. A large amount plastic instruments in the tray puts you at risk of failing dry time testing. Keep total tray weight within bounds of regional requirements.
In addition, incorporating usability testing on packaging designs will help facilitate proper aseptic presentation and a smooth transition from sterile to non-sterile environments are essential for healthcare professionals. Optimal packaging design also considers sustainability aspects, such as the use of eco-friendly materials and minimizing excess packaging waste.
Regulatory Compliance, Quality Assurance, and Continuous Improvement
Sterilization, reusable instrumentation, and packaging are tightly regulated areas within the orthopedic industry. Regulatory bodies, such as the FDA and international standards organizations, provide guidelines and requirements to ensure the safety and efficacy of devices. Compliance with these regulations is essential to gain market approval and maintain patient trust. Manufacturers must establish robust quality management systems, conduct thorough validation studies, and implement effective quality control measures such as inspection and quarterly audits to ensure the reliability and consistency of sterilization, reusable instrumentation, and packaging processes. See ISO 11737, 11137, and AMI ST79.
Thanks to orthopedic research, device designs are continually advancing highlighting new materials and features. This progress extends to quality improvement projects, sterilization methods, and packaging innovations. Collaboration between industry expert consultants and regulatory authorities is vital for driving innovation and ensuring that decision making considers whether changes can be adopted into previous studies or if new testing is required.
Sterilization, reusable instrumentation, and packaging form a critical triad in the medical device industry, encompassing patient safety, operational efficiency, and environmental sustainability. Through meticulous sterilization protocols, the use of reusable instruments, and the development of optimized packaging solutions, orthopedic professionals can enhance patient outcomes, reduce costs, and minimize their ecological footprint. By prioritizing regulatory compliance, fostering continuous improvement, and embracing innovative technologies, the orthopedic community can maintain the highest standards of quality and safety. It is only through a comprehensive understanding and integration of sterilization, reusable instrumentation, and packaging practices that orthopedic product development teams can continue to evolve and flourish while delivering exceptional care to patients.
Eric Kennedy is an engineer at Kaleidoscope Innovation based in Cincinnati, Ohio, and has over 15 years of global medical device experience leading large- and medium-scale concept-to-launch orthopedic, micro-surgical, cardiovascular and ophthalmic devices.
Matt has always loved interacting with clients to find solutions for their challenges. He was drawn to business development at Kaleidoscope Innovation because of the great potential he saw. After graduating from the Lindner College of Business at the University of Cincinnati, he worked with two startups, a marketing consultancy, a financial services company and the non-profit 3CDC. He believes that listening is the most important part of sales. In his free time, Matt enjoys movies, trying new foods, traveling and the great outdoors.
Rapid Prototyping Revolutionizing Orthopedic Device Development
Rapid prototyping has emerged as a transformative force within the field of orthopedic device development, reshaping the way medical devices are conceptualized, tested, and brought to market. In this article, we delve into the substantial influence that rapid prototyping is exerting on the orthopedic industry, exploring its advantages, applications, and prospective implications.
Accelerating Innovation and Iteration through Orthopedic Product Development
The dynamic realm of orthopedic product development has found a robust ally in rapid prototyping. This innovation leverages advanced 3D printing and additive manufacturing technologies to swiftly transform digital models into tangible prototypes. In a mere matter of hours or days, engineers and designers working on orthopedic research can iterate and refine designs, hastening the innovation cycle. This acceleration paves the way for speedier iterations, efficient incorporation of feedback, and optimal design enhancements. The outcome? Augmented device performance, elevated functionality, and an expedited journey from concept to commercialization.
Customization and Personalization in Orthopedic Device Design
Orthopedic devices necessitate tailored solutions to harmonize with the distinctive anatomical requisites of individual patients. The prowess of rapid prototyping empowers product development teams to craft patient-specific orthopedic implants and instruments. This is achieved through the fusion of advanced imaging techniques, computer-aided design, and orthopedic design consulting. By capitalizing on these rapid prototyping technologies, orthopedic professionals can engineer bespoke solutions that not only offer impeccable fit, but also precise alignment and superior functionality. The upshot? Optimized patient outcomes, heightened satisfaction, and an orthopedic product development landscape poised for transformation.
Efficient Testing and Validation of Orthopedic Devices
Prototypes conjured through rapid prototyping techniques transcend the realm of theory. They are subjected to rigorous testing and validation processes that mirror real-world circumstances. For orthopedic product design teams, this means a proactive identification of potential design glitches, a comprehensive evaluation of performance parameters, and steadfast regulatory compliance. By fostering an environment of early feedback and iterative testing, manufacturers can effectively curtail errors, slash costs, and expedite the time to market for orthopedic devices. The outcome? Enhanced efficiency, reduced risk, and orthopedic product development that adheres to the highest standards.
Collaboration and Stakeholder Engagement in Orthopedic Design Consulting
The power of rapid prototyping extends beyond the realm of design teams to foster productive collaboration among diverse stakeholders in orthopedic device development. By providing tangible prototypes for visualization and interaction, rapid prototyping emboldens surgeons, engineers, and stakeholders to contribute valuable insights. This collaborative approach facilitates informed decisions regarding design adaptations, usability enhancements, and functional requisites. The ultimate goal? Orthopedic instrumentation that seamlessly align with the desires and needs of end-users, culminating in heightened adoption and acceptance within the healthcare community.
Cost-Effectiveness, Risk Mitigation, and Orthopedic Engineering
The conventional pathways of orthopedic product development are often fraught with steep upfront costs, protracted timelines, and inherent risks. Rapid prototyping emerges as a potent antidote to these challenges, seamlessly curtailing development costs and compressing timeframes. Moreover, it serves as a vanguard against design pitfalls, identifying and resolving issues in their embryonic stages. By harnessing the potential of rapid prototyping, orthopedic product development teams adeptly allocate resources, attenuate financial risk, and usher innovative products to market with unprecedented efficacy.
Future Implications of Orthopedic Device Engineering
The impact of rapid prototyping in orthopedic device development is poised to burgeon exponentially in the forthcoming years. As materials, 3D printing technologies, and artificial intelligence continue to evolve, innovation will flourish, enabling the genesis of intricate and sophisticated orthopedic devices. Rapid prototyping shall remain at the heart of translating these breakthroughs into tangible solutions, relentlessly pushing the boundaries of orthopedic care.
In conclusion, the landscape of orthopedic device development stands forever transformed by the advent of rapid prototyping. Through its application, orthopedic professionals have been empowered to create patient-specific solutions, improve device performance, and enhance patient outcomes. With the orthopedic industry embracing rapid prototyping technologies, we can expect an accelerated pace of innovation, a more personalized approach to care, and the development of advanced orthopedic devices that will shape the future of musculoskeletal medicine.
Matt has always loved interacting with clients to find solutions for their challenges. He was drawn to business development at Kaleidoscope Innovation because of the great potential he saw. After graduating from the Lindner College of Business at the University of Cincinnati, he worked with two startups, a marketing consultancy, a financial services company and the non-profit 3CDC. He believes that listening is the most important part of sales. In his free time, Matt enjoys movies, trying new foods, traveling and the great outdoors.
The Future of AI-powered Healthcare
What is artificial intelligence (AI)? Is it the evoking computer from sci-fi aware of its own existence and determined to destroy humanity? Is it a robot that does our job for us while we kick our feet up? Right now, maybe it is neither, it can be defined as “ASystem that mimics human intelligence to perform complex tasks using advanced learning algorithms that capture underlying patterns and relationships from the data they collect.” The tasks and benefits from such a system can be many but generally serve as three main use categories: accuracy improvement, automation of tasks, or a recommendations engine.
In developing a SAMD (Software As a Medical Device) product consider both the regulatory guidelines and best practices. The FDA is partnering with industry to develop regulations in this emerging field, they recently released a guidance on Clinical Decision Support Software describing the criterion in which software is considered a medical device by the agency. And, during software life-cycle development, ISO 62304 outlines the processes of risk management, maintenance, configuration management, and problem resolution.
Developers should build in systems on the front end for data mining whether in the form of document capturing tools, video data collection, speech recognition, or otherwise. And, comprehensive cybersecurity around these data sources in addition to the access, analysis, and output systems.
Lastly, algorithms should take bias into account. This is already present in the diagnosis making process today, clinicians can jump to conclusions based on early information and stick to their guns even as new information becomes available (premature closure / anchoring). The algorithms themselves can have bias, in how data is fitted when machine learning is automated.
Automation Bias: Tendency of people to show deference to automated output, maybe due to person’s lack of confidence/experience, or assumption that the automation designed to make the correct determination.
Fitting Bias: Over Fitting- Automation has been overly relying on the trained data and does not provide correct responses when given new information. Under Fitting - Machine is under trained and doesn’t correctly identify relationships between the variables.
Widespread AI use is in its infancy, its currently being leveraged across several surgical products currently on the market including surgery planners, guidance systems, AR, blood loss monitoring, and predictive analytics. The future holds many opportunities for AI to burn down existing healthcare challenges.
Accuracy Improvement:
Comprehensive Patient Medical Information
Summarization and Highlighting of Patient Case History
Accurate Encoding of procedures and diagnosis for insurance
Accurate diagnosis from medical images
Risk-aware decision making –using predictive analysis of surgical outcome, implant choice, length of hospital stay, risk of re-hospitalization
Post op x-ray, feedback loop, feedback to surgeon on trending accuracy stats, predictive risks
Physician burnout - make less errors during diagnosis
Physician shortage – making fewer surgeons more efficient
Patient/procedure/surgeon customized device on demand
Fair surgeon success ratings based on predictive risk/outcomes
Informing consumers on surgeon/facility for their condition to maximize outcomes
It probably won’t be too far into the future before some of these AI-enabled improvements become mainstream practice in the healthcare domain. The recent advances in ChatGPT have shown how complex knowledge intensive tasks such as text summarization, essay generation, intelligent Q&A (Question and Answer), etc. can be accomplished by current language models. Convolutional Neural Networks (CNN)-based deep learning models are showing promise for automatic detection and classification of tumors in medical imaging. Advanced Machine Learning (ML), Rule-based modeling, and Embedded-AI can help with addressing other opportunities such as risk prediction, improved surgical planning, AI-assisted robotic devices, supply chain automation, and customized recommendations
AI will help in bringing consistency in the process, improve overall efficiency, reduce cost of operations while adhering and improving the regulatory compliance.
Interested in implementing AI/ML technology into your business?
Kaleidoscope uses advanced learning algorithms to capture patterns and relationships within your data to help you better understand the data collected and provide both exploratory and predictive analytics based on findings. Contact Matt Suits: [email protected]
Eric Kennedy is an engineer at Kaleidoscope Innovation based in Cincinnati, Ohio, and has over 15 years of global medical device experience leading large- and medium-scale concept-to-launch orthopedic, micro-surgical, cardiovascular and ophthalmic devices.
Dr. Ravi Nandigam
Principal Consultant
Dr. Ravi Nandigam is a Principal Consultant in the Advanced Engineering Group at Infosys. He has 15 years of experience applying Artificial Intelligence, Machine Learning, and Software-based solutions in diverse Engineering domains. Dr.Nandigam is an inventor of a patent and author of many technical articles in peer-reviewed international journals on topics of AI/ML-based applications in Engineering.
Dr. Ravi Kumar G. V. V.
Vice President and Head Advanced Engineering Group (AEG)
Dr. Ravi Kumar is Vice President and Head Advanced Engineering Group (AEG) of Engineering Services, Infosys. He led numerous innovations and applied research projects for more than 26 years. His areas of expertise include mechanical structures and