Kaleidoscope Innovation Integrates Regulatory Mark to Offer Global Regulatory Service

CINCINNATIAug. 17, 2022 /PRNewswire/ -- Kaleidoscope Innovation announced today that the regulatory, quality and clinical affairs consulting group, Regulatory Mark, is now part of the team at Kaleidoscope Innovation, an Infosys company specializing in the full spectrum of product design and development.

Led by regulatory industry veterans Alison Sathe and Colleen Murphy, the Regulatory Mark team will work closely with Elliott Fegelman, MD, Kaleidoscope's Chief Medical Officer and VP of Medical Affairs, to expand and streamline the design consultancy's regulatory strategy, licensing and support services. This includes leading FDA and EU MDR regulatory submissions for global regulatory licensing and ongoing compliance.

According to Fegelman, this formal partnership was a natural progression in an already strong working relationship between Kaleidoscope and Regulatory Mark. Since 2016, Kaleidoscope Innovation and Regulatory Mark have completed approximately 40 joint regulatory submission projects for medical device clients—all of which received regulatory clearance.

As the regulatory affairs market grows exponentially, Kaleidoscope projects they will triple the volume of packages they will submit for US and global EU clearance during the next two years.

"This merger allows us to offer a true total product lifecycle (TPLC) approach and integrate seamlessly with Kaleidoscope's existing best-in-class processes," Sathe and Murphy explained. "From regulatory strategy and planning at the concept stage through design and development and into post-market we can share insights to ensure efficient regulatory submissions and ongoing compliance."

"The joining of these leadership teams and capabilities will allow us to offer our medical device clients—and ultimately the patients they serve—even more comprehensive and efficient services," Fegelman explained. "We're augmenting what's already there—now with in-house, end-to-end capabilities."

Learn more about Kaleidoscope Innovation and Regulatory Mark.

About Kaleidoscope Innovation

Kaleidoscope Innovation, an Infosys company, is a full-service product development firm innovating across medical, consumer and industrial markets. For over 30 years clients have partnered with Kaleidoscope to improve the human experience. Offering both consultancy-style and onsite services, they provide a full breadth of disciplines to meet their partners where needed, including: Insights & Human Factors, Medical Affairs, Industrial Design & User Experience, Engineering, Visualization and Software Development.

Media Contact

Elliott Fegelman
Chief Medical Officer and VP of Medical Affairs
(800) 930-5793
[email protected]

Back to Insights + News
Virtual Tools for Innovative Product Design

Co-authored article with Infosys

Design influences a product’s lifecycle performance and cost, starting from its development. Product development costs rise significantly if a defect is identified at a later stage. Using virtual tools for new product introduction simulates possible scenarios upfront for comprehensive testing. It gets products to the market quickly and saves money for a successful launch.


  • Design influences a product’s lifecycle performance and cost, starting from its development.
  • Conceptualization and design stages determine more than 70% of a product’s lifecycle decisions
    and cost.
  • Virtual tools are an effective way to design new products that serve specific customer needs.
  • Virtual models of new products accelerate their evaluations to shrink the development cycle time.
  • Organizations should create virtual replicas of workplaces for human-machine interactions studies from multiple perspectives.

Lifecycle cost is the total cost (direct and indirect) a product incurs in its life span. Conceptualization and design stages determine more than 70% of a product’s lifecycle decisions and cost.1 The earlier an issue is identified, specifically in the design stage, the easier it is to fix and avoid costly rework. Virtual replicas (or digital twins) of products, processes, and environments streamline design and new product development to reduce costs and time to market.

A common assertion is between 80% and 90% of new products fail. However, realistic failure rates vary by industry, from 36% in healthcare to 45% in consumer goods.2 Professor Clayton Christensen, best known for his theory of disruptive innovation, believes the success mantra is to design products that serve its intended customers. Manufacturers should focus on the function that a customer who buys a product would want it to do.3

To enable that, virtual representations of the product under development, in orchestration with humans and other entities in the ecosystem, is an effective approach. The approach encourages innovation. Designers visualize the product’s operating condition, create digital prototypes for trial runs, and carry out tests on a global scale. Virtual tools like 3D computer models and digital twins support informed decisions in early product design stages. This mitigates the risk of a wrong product release or a poor customer experience.

Virtual products are an effective way to design new products that serve specific customer needs.

When end users receive virtual training of a complicated product’s operation (like an aircraft engine), memory retention happens in the background. Any number of such instances can be created at a negligible marginal cost for repetitive usage. A central digital setup saves the cost of setting up multiple physical arrangements at different locations.

Parameters of Successful New Products

Product failures are more from a commercial perspective than technical. More than 25% of revenue and profits across industries come from new products, according to a study by McKinsey. Successful products relate to a set of core capabilities, with the top-most as follows:4

  • Collaboration to execute tasks as a team.
  • Investment to mine market insights and their inclusion in the product.
  • Plans for new product launches, comprising target customer segments, key messages to communicate, and objectives to achieve.
  • Talent development for new product launches with defined career paths and incentives.

At the same time, the primary reasons for product failures and mitigants are the following:5

  • Gap in meeting product expectations; delay launch until product completion.
  • Inability to support rapid growth if a product is successful; set ramp-up plans to avoid this.
  • Low demand for a new product; perform due diligence for customer requirement before planning a product. Launch products in suitable markets.
  • Difficulty in new product usage; provide proper customer orientation and training.

Virtual tools for product design address the above reasons for failure and increase the chances of successful product launches.

Design Thinking with Virtual Tools

Design thinking is a popular, technology-agnostic approach for new systems design and problem solving. It balances the technical feasibility of products, financial viability, and desirability from a customer’s perspective (see Figure 1). It is even more impactful when implemented along with virtual product design tools.

Figure 1. Design thinking at the sweet spot of desirability, viability, and feasibility


Source: Infosys

The design thinking cycle starts from empathy to understand a customer’s needs from their perspective, followed by defining, ideating, prototyping, and validating, in iterative loops. New product development and customer participation encourage collaboration in a virtual environment to practice design thinking. Immersive environments using mixed reality (combinations of augmented reality or AR and virtual reality or VR) create a working environment close to the real world, to identify and correct issues much ahead (see Figure 2).

Figure 2. Virtual tools used across design thinking stages


Source: Infosys

Virtual models of new products accelerate their evaluations to shrink the development cycle time.


Design firm IDEO, for example, wanted to perform ethnographic research to capture customer requirements for new products. However, it was difficult to identify key observations from many data points and recreate them later, even with expensive videos or photos. It addressed the challenge through a VR camera.6

Kaleidoscope Innovation, a design and development unit within Infosys, designed a large freezer project using virtual tools. Such projects usually undergo several time-consuming team reviews. The team created a 3D model in a VR environment that helped designers walk around the product early in the design phase, evaluate its usability from multiple perspectives, and tackle proposed changes to design.

This virtual model did not change the overall project plan, but accelerated evaluation and decisions around it, shrinking the product development cycle time. The team selected the best design without spending time and money on physical prototypes.

Automation in WareHouses

Humans work with machines in warehouses. Material handlers carry out order fulfillment along with pick-and-place robots. Workers’ safety in all situations is important.

A leading e-commerce player wanted to validate design decisions for robots working in its order fulfillment warehouses to gain insights into their safe working alongside humans. Kaleidoscope Innovation created a virtual environment where employees interacted with robots in different situations. The team created a digital twin to simulate several configurations of robots and their working environment. The company recorded the results and interviewed employees about pros and cons of each situation.

The VR-based solution provided a cost-effective and safe way for the e-commerce firm to test new concepts in human-robot interaction and capture data and feedback before implementation. It helped the managers zoom out and look at the big picture, in contrast to one robot or equipment at a time.

Training for Product Usage

Operators need training to work on machines with complex functionality and procedures, to stay safe and productive. VR-based training prepares humans before hands-on operation on a machine. For instance, Rolls-Royce has rolled out a VR-based training kit for its airline customers to manage aircraft engine maintenance and repair.

Infosys’s VR-based program provides step-by-step instructions to train employees in a hospital environment. The program uses physical gestures to simulate actual tasks involved in a job. Gamification with scores and points keeps employees engaged and motivated. Scores reflect an individual’s strengths and weaknesses. Training data is integrated with the central learning management system for records.

A multinational industrial and consumer goods manufacturer wanted to create an e-training platform for its new operators. It had a few integrated assembly lines for its finished items. The Kaleidoscope Innovation team created a virtual training module along the assembly line, one workstation at a time. The team used front-end user interface elements to guide users for equipment operations. It tracked performance metrics in the backend to provide feedback for correction. Best practices of creating a virtual replica of one workstation are used at later stations.

Futuristic Workplaces

While collaborative, remote and hybrid working has surged since the pandemic, the future is in three-dimensional virtual and mixed reality workspaces. Organizations benefit from a virtual 3D replica of its workspaces, equipment, products, avatars, or personas. Employee collaborations lead to faster new product development with effective interactions. Teams share ideas, explore, and invent new concepts. Early collaboration of team members in multiple locations enables them to make more informed decisions in the product development process.

Organizations should create virtual replicas of workplaces for human-machine interactions studies from multiple perspectives.

The future of work in healthcare, retail, engineering, and manufacturing is where humans and human-like machines work together. Organizations should proactively create such workspaces virtually and study human-machine interaction from safety, productivity, and employee morale perspectives before any physical implementation.


  1. Product life cycle cost analysis: State of the art review, Y. Asiedu &P. Gu, 2010, International Journal of Production Research.
  2. Myths About New Product Failure Rates, George Castellion, Stephen K. Markham, 2013, published in the Journal of Product Innovation & Management 30 pp. 976-979.
  3. What Customers Want from Your Products, Clayton M. Christensen, Scott Cook and Taddy Hall, January 16, 2006, Harvard Business School.
  4. How to make sure your next product or service launch drives growth, Alessandro Buffoni, Alice de Angelis, Volker Grüntges, and Alex Krieg, October 13, 2017, McKinsey.
  5. Why Most Product Launches Fail, Joan Schneider and Julie Hall, April 2011, Harvard Business Review.
  6. IDEO: Getting closer to the customer through virtual reality, Lauren, April 27, 2017, Harvard Business School.


Back to Insights + News
Designer Centered Design: Humane Design

While “User Experience Design” is often used interchangeably with “User Interface Design,” UX goes far beyond mere interface design to encompasses a user’s complete experience of a product, system or service. For Don Norman, the usability engineer and researcher who coined the term “User Experience,” all aspects of the product experience, “from initial intention to final reflections,” ought to support the user’s needs and desires. Years before Norman came onto the scene, this same concept inspired Jef Raskin, a human-computer interface expert, to define the ideal computing system. Though his vision of a computer, which was nothing more than a glorified word processor, was uninspired even in its own time, Raskin developed a set of UX Design principles, including UI consistency and encouraging users to develop productive habits, that are still relevant today.

“The Canon Cat and the Mac that Steve Jobs Killed,” an article by Matthew Guay, describes Raskin’s desire to create a computer with a humane interface. “An interface (i.e. ‘The way that you accomplish tasks with a product’) is humane if it is responsive to human needs and considerate of human frailties,” wrote Raskin. His goal was to liberate computer users through increased productivity—getting more done in less time. Inspired by Isaac Asimov’s laws of robots, Raskin defined his own laws of computing to achieve this goal:

“A computer shall not harm your work or, through inaction, allow your work to come to harm.

“A computer shall not waste your time or require you to do more work than is strictly necessary.”

Raskin’s second law is applicable far beyond word processing and seems to emphasize a common struggle faced by UX and UI designers alike. Powerpoint is a notable example of a poorly designed interface that results in decreased productivity. Its predictive toolbar feature that attempts to anticipate the user’s needs based on what has been selected. While this feature can be helpful when it correctly predicts the user’s needs, it can be very inconvenient when it guesses incorrectly, adding multiple mouse clicks to the user’s workflow.

Another violation of Raskin’s second law is inconsistency between user interface elements. Consider Apple’s latest iOS update. Previously, incoming text messages appeared at the top of the lock screen. Following the 16.1.1 update, incoming text messages now appear at the bottom of the lock screen. Neither location is objectively right or wrong, except for the user’s previous experiences of seeing new messages at the top. Now users must unlearn a previous habit to relearn a new interaction. Does the new feature add sufficient value to be worth the friction it introduces into the user’s experience?

The quintessential mnemonic “righty tighty lefty loosey” illustrates the socially ingrained understanding of how to lock or unlock a rotating mechanism. This convention becomes apparent when a user encounters an experience that is counter to what they expect. Because a user intuitively expects to turn the mechanism a certain way, requiring the opposite is a source of confusion and frustration.

When designing products, consistency is one of many usability principles, known as heuristics, that act as general guidelines for creating intuitive user interactions. Usability expert Jakob Neilsen, who cofounded the Nielsen-Norman Group with our good friend Don Norman, created the most well-known and widely used set of usability heuristics. These heuristics are used by product designers across the globe to design more intuitive and user-friendly products and experiences.

Another key heuristic that Nielsen defined is the user’s ability to match the design of the system to their understanding of the real world. Imagine a stove top with 4 burners arranged in a square and knobs that are arranged in a line. This creates confusion and tension because the user does not know which knob controls which burner. However, if the knobs are arranged in the same square pattern as the burners, and each knob activates its corresponding burner, users quickly understand which knob needs to be turned to ignite the intended burner.

The ultimate goal of user-centered design is to increase productivity and create an experience that is “responsive to human needs and considerate of human frailties.”  No product is experienced in a vacuum—each user encounters that product within the context of a lifetime of other experiences. Understanding the needs and frailties of the end user empowers designers to create more intuitive, efficient, and enjoyable experiences for users. While Jef Raskin’s Canon Cat was a commercial failure, in a world inundated with widgets, tools and systems—both physical and digital—his concept of a humane interface is perhaps more relevant now than ever.

Headquartered in Cincinnati, Ohio, Kaleidoscope Innovation provides medical, consumer, and industrial clients with full-service insights, design, human factors, and product development. For more than 30 years we have been helping our clients grow their capabilities, gain usable knowledge, and get worthwhile results.

As a full-spectrum product design and development firm, we are an expert extension of your product vision. Our teams collaborate across disciplines, providing specialized input to produce the ideal intersection between function and form. To ensure the soundness of our work, Kaleidoscope houses a full range of test labs, and we employ an award-winning team that embraces every challenge, applying their experience, ingenuity, and passion.

Back to Insights + News
Designer Centered Design: Using VR for User Research and Testing

What do you do when you are in the early concept development of the design process and want to get user feedback to inform future development? Maybe you would 3d print or hand prototype your design. Putting an early mockup of your design in the hands of the user for them to assess is an important part of any user centered design process. But what if your design concept involves autonomy, a UI or a complex series of physical interactions with the user? Without additional functionality, a physical low fidelity mockup in this context loses its effectiveness in garnering insight.

“Product design” as a whole has shifted. Increasingly, the objects that we design and use in our daily lives have a component of digital interaction and/or are part of a larger virtual ecosystem. These challenges of gaining early insights from low fidelity mockups is epitomized when designing something like an autonomous robot. This design process sometimes involves years of hardware and software development for even basic functionality. So how can designers run ahead of this development to put a concept in front of users early enough to inform how such a complex product should be designed to work in these interactions to instill trust, engagement, and even enjoyment?

Let’s say that we are designing a new autonomous robot to deliver room service orders to guests at a hotel. The first issue to address is how people react to an autonomous device sharing their space. How close is too close? Is there a violation of a social contract by placing this robot in what was otherwise a dedicated space for people? How do they expect the robot to behave? Most importantly, how do you begin to probe those expectations of the customer when hardware and software development are not mature enough to represent the final design concept? You cannot put an engineering prototype in close proximity with the user without creating a potential safety risk. If you were to make a remote-controlled mockup of the robot, how can you truly test user comfort with autonomy when the test subject knows that there is a human in control? And how do those reactions to autonomy change with multiple robots? This is where VR stands out as a remarkably effective tool for gaining insight.

Utilizing VR in complex product interactions allows designers to not only save on the resource cost of hardware prototyping and manufacturing, but also allows them to iterate much more rapidly and push boundaries of comfort with users without ever putting the user at risk. By conducting user testing in VR, not only can you present a complex and interactive product experience in front of the user, but you can also transport them to specific environments and scenarios with the push of a button. This enables the development of not only a guiding model for the design, but also a guiding model for software development as VR interactions can inform what does and does not work in interactions between humans and autonomous systems. However, VR still has its shortcomings and is not the definitive means of user testing in product development.

Virtual reality for user testing and concept evaluation is simply another tool in our toolbox as designers and design researchers. While it offers new capabilities for testing and evaluation, there is a major tradeoff between a VR mockup and a physical one… namely the nature of “virtual” reality itself. There is no physical feedback, and while there is a strong sense of depth perception, it is not the same as an actual physical interaction. While augmented reality may better incorporate both the physical and virtual, the virtual assets can stand out as even more artificial than a full virtual immersive experience because of the difference in fidelity of virtual vs real world objects. Does this eliminate the need for physical prototyping and low fidelity physical mockups? No. But VR enables designers and developers to test more complex products earlier in the design process with users where alternative approaches are less feasible due to complexity and cost.

While the role of a designer can be reductively described as “stylist” I think the true value we bring to a team are as story tellers both outwardly to the customer/target user and internally. VR enables us to share virtual models without “CAD scale blindness” and to collaborate more seamlessly even while remote. Having a VR headset brings even remote collaborators together and immerses them in a 3d virtual experience. Meaning there is less misunderstanding and room for interpretation than just a concept sketch, 2d render, or even a 3d CAD model on a screen.

As this technology continues to mature and becomes more accessible, I see the use of VR as an increasingly valuable tool for designers. Where paper and markers gave way to Cintiqs and iPads, I could see CAD modeling and user testing making room for VR modeling, collaboration, and design evaluation. We are entering a new frontier for design and media with VR that will undoubtedly influence how we live and work. Pick up a headset and explore the possibilities for yourself. There is plenty of undiscovered opportunity and impact to be harnessed with this new technology!

Back to Insights + News
A Case for Onsite Services: The Flexibility and Affordability of Direct Product Development

Kaleidoscope Innovation realized early in its business journey that the individuals, organizations and companies they worked with could benefit from insights, design and development services through one of two different channels: consultancy and onsite services. This case study examines the onsite services side of the business and the benefits it brings to the firm’s partners.

Why Onsite?

Though Kaleidoscope Innovation started as a product development consultancy, it became evident that the company could complement their robust consultancy-style offerings with assistance for business partners seeking onsite services. When talking with business partners, Kaleidoscope discovered a common thread: many wanted or needed additional personnel to work in teams on projects but were constrained by headcount limitations or budget. These partners needed a flexible solution that would allow them to expand or augment the size and specialized skills of their teams when needed. To fill this need, Kaleidoscope expanded its product development business to offer onsite services.

Services Offered

Similar to the consultancy side of the business, Kaleidoscope’s onsite placement division provides companies with services across the product development spectrum. The onsite services placement team connects companies with the expertise they need—skilled designers, engineers, digital modelers, animators, project managers, technical writers, design researchers and more. Because the consultancy side of the business also comprises professionals working in these specialized fields, Kaleidoscope Innovation knows what to look for when connecting business partners with talent for their teams.

How It Works


As an example, a leading medical manufacturer identifies what resources they are seeking, such as an industrial designer for their projects. The business partner needs this industrial designer to work onsite as part of its team, but the company is not in a position to create a full-time, long-term position. This could be for any number of reasons, from headcount constraints, to budget, to a desire for low-risk entry. Given any one of these issues, Kaleidoscope Innovation can offer a creative, low-risk, high-return solution. Kaleidoscope’s onsite placement services team handles the process of finding and acquiring an experienced industrial designer. Kaleidoscope Innovation hires that person as a Kaleidoscope employee who works onsite at the partner’s business for the desired length of time. The partner can keep the employee onsite or cease using the person’s services as needed. Kaleidoscope takes responsibility for the HR implications. The business partner simply pays a monthly fee to Kaleidoscope for the industrial designer’s services. “When it comes to building relationships, we care about our employees and our partners,” says Joe Campbell, Recruiting Account Manager. “This is more than a placement opportunity. This is one person’s career and another person’s project.” When an onsite project is completed, the employee may be assigned to another onsite project or work at the consultancy. Dave Banks, who leads Kaleidoscope’s marketing team, is one example of a Kaleidoscope employee who started work in the onsite placement division and transitioned back into the consultancy. “Kaleidoscope is always looking for top talent,” says Banks. “We hire high-caliber, quality people whether it’s onsite or in-house, and this allows an easy transition for someone to move between the two. Often, our business partners become so happy with the people that Kaleidoscope places, they hire them full-time.”

Value For Businesses

Committed to improving the human experience through meaningful innovation, Onsite Services from Kaleidoscope Innovation flex to solve problems, filling the gaps with qualified people.

Let's Connect

Learn more, or for a consultation, contact us.

Back to Insights + News
Innovation Leadership & How to Build the Ideal Innovation Team

In this article about innovation leadership and the ideal innovation team, Kaleidoscope VP of R&D, Medical, Michael Clem DVM, MS examines the functional and cross-functional expertise needed to drive the best innovation resources to turn creative ideas into quality products that benefit consumers.

People often think of Thomas Edison when they think of innovation. This focus on the single inventor can sometimes give the wrong impression of how successful innovations take place. In reality, Edison surrounded himself with teams of creative individuals. It has been said that innovation is a team sport, requiring teamwork.

But how do you approach staffing your ideal team to drive innovation in your company?

Perhaps the most important aspect of innovation leadership and building the ideal innovation team is to foster cross-functionality. Really focus on getting people who serve specific functions in the team, but who also have a shared vision and shared incentives. This ideal innovation team is not just assigned to a common project, not just sitting together. The ideal innovation team is really working together and pushing boundaries to take on additional roles outside of their areas of specialization.

From a functional expertise perspective, here are the essential functions or team members:


Engineers bring technical expertise in product design and development to the team. Over time, I came to broadly characterize two types of engineers as critical to successful development. Both types have their own inherent strengths and are equally valuable.

"Idea" Engineers
These are the creative “inventive engineers” who are always coming up with new ideas. These individuals are extremely important to have on the team, but often hard to keep focused. They like to move on to the next challenge or exciting problem to solve. These out-of-the-box thinkers come up with new solutions to break new ground.

"Closer" Engineers
These are the heavy lifters who are needed to follow through to make the big, creative ideas become a reality. They work out the problems, build the prototypes and run the tests. They are essential to getting to final designs that can be manufactured. This is certainly not to say that these individuals are not creative or that they do not also come up with great ideas. They just tend to excel in dotting the “i’s” and crossing the “t’s” required to advance a radical idea.

These team members capture opportunities as defined by Thomas Edison when he said, “Opportunity is missed by most people, because it shows up dressed in overalls and looks like work.”

Occasionally, someone will find an individual engineer who embodies both characteristics, but in my experience, most people excel in one direction or the other.

CAD Design

Fifteen years ago, it was not the norm for engineers to do their own CAD. However, the digital design world has evolved and this is no longer the case. With that said, having a dedicated CAD designer on the team can free engineers to concentrate on other tasks. Otherwise, engineers would be devoting “screen time” to refining concept design for rapid prototyping. In many instances, a seasoned CAD designer can fulfill the role of the “closer” or heavy-lifting engineer. They will build models, test and refine designs for manufacturing.

Industrial Design

Industrial Design is an extremely valuable skill to have at all stages of concept development. Industrial designers bring the Design Thinking process to life. Beginning with understanding customer needs, translating insights into concept design, and integrating human factors into usability, their work is essential. Good industrial design work isn’t possible when the designers are brought in at the end to “make it look good.” It must be incorporated from the beginning of the process.


Early in the process, the team needs to be thinking about the market and whether their ideas would fit in the current market environment. Marketers and business people know what sells and how to make the case for the product. In many companies, they often drive a project and should always be included in discussions and planning from the outset.

“Hard work is still wasted on features that don’t make the marketing headlines,” says GV Design Partner Jake Knapp in an article on product design and marketing. “Instead of the icing on the cake, I like to think of marketing as the sugar in the batter. You’ve got to get it in before the cake gets baked.”


In medical device design and development, the team should include an expert with in-depth clinical understanding. This is often the end-user physician. In addition to physicians though, it is crucial that the team also consider inputs from the entire healthcare ecosystem. This includes personnel who may be involved in the purchase, such as the value-analysis committee. (Learn more about the essential role of a value analysis committee.) Also the project needs to consider those involved in the preparation or use of the final product, such as technicians and nursing staff. This clinical knowledge may come from an individual clinician or a physician advisory panel, augmented by formal usability and concept research with users.

Support Functions

In an innovation setting, there will need to be additional support functions. Some of these important roles might be contracted from the outside, depending on the size of the organization. These roles include legal advisors, HR professionals, finance professionals, IT professionals, regulatory affairs, quality and operations management professionals.


Ideally, the team leader should come from one of the functional roles on the team, engineering, marketing or design. The team leader serves as the main point of contact with management and other entities that need to be engaged to keep the project moving forward, and they must be able to recruit.

With the team leader also playing a functional role on the team. They are more like a “Player Coach,” providing direction while making meaningful contributions to the advancement of the project. At the same time, every member of a high performance innovation team needs to be a leader in his or her own right.

Transitional Innovation Leadership
In this model, leadership may be transitional. Marketing and Industrial Design may lead the early stages of the project. For example, in the phases of understanding the customer needs, conducting market research and developing insights that shape the work. Later, leadership may transition to Engineering and Design leading during the ideation and concept development phases. At that time, Marketing then focuses on developing the business case for moving forward. With concepts in hand, leadership may transition back to Marketing for final validation research, pricing and launch planning.

Regardless of which function is taking the lead for a project phase, the best innovation comes when other functions are included throughout. This helps everyone to better understand what needs to be done from a big picture perspective. This also helps teams feel more invested in the outcome as well. Cross functional teams mean getting rid of information silos and opening communication.

Hot Teams

These ideal innovation teams can also be thought of as “hot teams.” These embody the idea of a cohesive group, working well together. Here the whole is greater than the sum of the parts.

The ideal innovation team does not need people who can only work in their specific areas of expertise, but who exhibit cross-functionality. People who don’t fear trying new roles. These individuals possess certain characteristics, such as their abilities to work together as a team. They also use their leadership skills to advance the work before them, take directives from management and embrace a fluctuating team structure.

They should also possess the tact and ability to navigate corporate processes to accomplish their team’s goals. But, be highly focused on reaching these relevant milestones in line with the end objective(s).

All things considered, ideal innovation teams need to have the right combination of skill sets, and must be willing to work collaboratively.

For those interested in learning more about how to form the ideal innovation team, I have written an e-book with input from my innovation-minded colleagues at Kaleidoscope that is free and available for download here. In the Ships and Castles Model I describe details on how to navigate front-end innovation efforts while fortifying an existing product line.

Ideal Innovation Team Sources

Clinical, Technical, Commercial and Organizational Considerations

Over the course of my 25 years working on and leading teams engaged in medical device development, I have experienced a variety of approaches to staffing the ideal innovation team.

In Part 1 of this series, I described a “functional approach” based on key technical skills team members should possess. Alternatively, in this section I describe a leaner approach based on critical categories of thinking required for medical device development.

In a lean startup environment, you can’t always access or afford all of the specific skills you might desire. At the same time, you do need to ensure your team is prepared to address the clinical, technical and commercial considerations inherent in developing medical product innovations. Depending on your organization’s size, the team may also need to be prepared to address organizational variables.

Building a team to address the clinical, technical, commercial and organizational considerations of product development requires a different way of looking at the individuals you choose. Rather than focusing on a person’s primary technical skill (i.e. engineering, design, marketing), identify team members who have the breadth of experiences necessary to successfully navigate the requirements in each category of thinking. From my experience, these individuals can come from various technical backgrounds.

Let’s look at the role each category plays in medical product innovation.

Clinical Considerations

In medical device development, a deep understanding of the users and clinical problem is critical to developing successful solutions. For instance, the concept development team must understand the problem, anatomy, physiology, pathology, users, use environment and so on.

Someone on the team needs to develop this multilayered understanding. This allows the team to represent patients, physicians, other healthcare professionals and key stakeholders who will benefit from the solution.

Depending on their training and backgrounds, this in-depth clinical knowledge might be a stretch for some. But with diligent observational research, relationships with consulting subject matter experts and secondary research, this knowledge can (and must) be integrated into the team. A good scientific or clinical advisory group, composed of relevant subject matter experts, can be invaluable.

Although this clinical understanding speaks specifically to medical device development, it has an equally critical corollary in any field of innovative product development. Simply foster a deep understanding of the end users and the job(s) they are trying to accomplish.

Some methods and tools that can help develop this knowledge include:

  • Ethnography and customer observation
  • Regulatory assessments
  • Procedure maps
  • Clinical stakeholder assessment

Commercial Considerations

Much like fostering an understanding of clinical considerations in your team members, integrating commercial considerations is highly important. Even if your innovation team is staffed exclusively with engineers or individuals with technical backgrounds, someone on the team needs to be ready and able to put on a business thinking hat. Ideally, this individual would come from a business or marketing background or have additional experience in these fields.

Examples of commercial considerations the team should address include:

  • Customer value proposition
  • Claims exploration
  • Competitive assessment
  • Business plan development

Innovation teams that fail to incorporate these commercial considerations in developing their solutions run the risk of creating wonderful technical solutions that the market will not embrace for any number of reasons.

  • Tools to help make sure the innovation team addresses these considerations include:
  • Concept selection criteria
  • Concept exploratory research
  • Customer segmentation and persona development
  • Financial modeling
Back to Insights + News
Why Using an End-to-End Product Development Firm Can Benefit Your Business (Even If You Only Need One Service)

Even if you are just looking to outsource one particular service (such as human factors, industrial design, engineering, software development, etc.) for your project, working with a full-service product development firm for said service can provide immense benefits to your business and project. Here are a few key reasons why:

01 | Holistic Understanding of the User-Centered Design Process

Employees at an end-to-end product development firm have gained additional perspectives into the user-centered design process from team members in other functional areas. This often informs their own processes for product development, and enables them to keep key considerations from other departments in mind as they themselves iterate on your project. This is especially true when the firm is a small- to medium-sized business because there is more likely to be intermingling of employees, rather than siloed departments of functional service areas.

02 | Prioritization of Cross-Functional Collaboration

When a business chooses to work with a full-service product development firm, the individuals they are hiring for their project are integrated with people in different functional service areas on a day-to-day basis. Their colleagues and internal team members for other projects span different roles in the product development process. Because of this, they are used to working and collaborating with people who have different viewpoints than themselves. Working with people who understand different stakeholder values can make for a more pleasant overall experience and can produce better results for the user and client.

03 | Greater Efficiency for Clients

When clients approach a firm that is strictly a design firm, for instance, and later decide they require engineering support for their project, they need to then utilize an additional firm. This means more time and opportunity cost in exploring possible firms and finding a reliable partner, approving a new supplier, signing an MSA (master service agreement) or NDA (non-disclosure agreement), explaining the project to a new group and potentially connecting them with the other firm to move the project along. This time and hassle is greatly reduced when starting with a full-service product development firm from the beginning. While a new phase may need to be discussed and different team members may need to be brought up to speed, much of the work would ramp up far more quickly and efficiently with teammates from the same company you have already trusted to achieve your project objectives.

04 | Retention of Proprietary Information by Less Companies (Risk Reduction)

If a business decides to outsource a different service for their current project (similar to point #3) or outsource various services for other projects down the line, using a full-service product development firm allows them to disclose their proprietary project information to less companies and potentially less people – reducing risk.


These are just a few reasons why using a full-service product development firm can benefit your business and help you achieve greater results for your project. Kaleidoscope Innovation is one such end-to-end product development firm. For over 30 years clients have partnered with Kaleidoscope to improve the human experience. Offering both consultancy-style and onsite services, Kaleidoscope provides a full breadth of disciplines to meet their partners where needed, including: Insights & Human Factors, Medical Affairs, Industrial Design & User Experience Design, Engineering, Visualization and Software Development. To connect with our team, please fill out the form on our contact page or connect with a member of our team directly.

Back to Insights + News